Basic Biology for Engineers & Big Data Analysis

Course Title	OMICS Technologies: Devices, Statistics & AI/Machine Learning	
Course Category	Pedagogy / Specialized Skills / Research / Generalized skills	
Relevant Discipline(s)	Artificial Intelligence & Machine Learning, Data Science, Bioengineering 3 days	
Duration of course in equivalent integer no. of days (min 3 days, 1 day = 6 hrs of lectures/hands on sessions)		
Proposed dates	Nov 27-29, 2020 & Dec 4-6, 2020	

Brief Course Description and Course Contents

WEEK-1

- OMICS technologies: genomics, proteomics & microarrays
- Public data repositories, sourcing and interpreting the data
- Obtaining and formatting data from array express
- Machine learning & non-linear biomarker discovery approaches
- Principals of machine learning, Neural networks, deep learning and Introduction to Artificial Intelligence.

WEEK-2

- System integration & device operation
- Microarrays device fabrication
- Salient Features of Big Data
- Pre-processing of Data Normalization & Missing value imputations
- Sure Independence Screening, Least Absolute Shrinkage and Selection Operator (LASSO), Shrunken Centroid Method
- Hierarchical Clustering, heat maps, PCA plots
- Networks & pathways analysis & visualization
- Mass Spec Applications from space missions, clinics to terrestrial challenges
- OMICS-based clinical applications

Instructor Details			
S. No.	Name of the Instructor	Department	Email
1	Prof Sanjeeva Srivastava	BSBE, IIT Bombay	sanjeeva@iitb.ac.in
2	Prof. Sanjeev Sabnis	Mathematics , IIT Bombay	sabnissanjeev@gmail.com
3	Prof. Siddhartha P. Duttagupta	Electrical Engineering, IIT Bombay	sdgupta@ee.iitb.ac.in
	Speakers		
4	Prof. Graham Ball	Nottingham Trent University, UK	graham.ball@ntu.ac.uk
5	Prof. Geraint (Taff) Morgan	The Open University, UK	geraint.morgan@open.ac.uk
6	Dr. Rodrigo Barderas	Ins&tuto de Salud Carlos III, Spain	r.barderasm@isciii.es

COURSE CONTENTS

WEEK-1

- * OMICS technologies: genomics, proteomics & microarrays * Public data repositories, sourcing and interpreting the data
- * Obtaining and formatting data from array express
- * Machine learning & non-linear biomarker discovery approaches * Principals of machine learning, Neural networks, deep learning and Introduction to Artificial Intelligence.

WEEK-2

- * System integration & device operation
- * Microarrays device fabrication
- * Salient Features of Big Data
- * Pre-processing of Data Normalization & Missing value imputations * Sure Independence Screening, Least Absolute Shrinkage and Selection Operator (LAS SO), Shrunken Centroid Method
- * Hierarchical Clustering, heat maps, PCA plots
- * Networks , pathways analysis & visualization
- * Mass Spec Applications from space missions, clinics to terrestrial challenges * OMICS-based clinical applications