Nonlinear and Data-Adaptive Signal Analysis Techniques and Applications

Course Title	Nonlinear and Data-Adaptive Signal Analysis Techniques and Applications		
Course Category	Specialized Skills / Research		
Relevant Discipline(s)	All branches of Science and Engineering, Earth Sciences and Climate Studies		
Duration of course in equivalent integer no. of days (min 3 days, 1 day = 6 hrs of lectures/hands on sessions)	4 days (i.e., 8 half-days @ of 4 hours per day), spread over two weeks.		
Proposed dates	January 15-17 (Fri-Sun) 2021 and January 22-24 (Fri-Sun) 2021		

Brief Course Description and Course Contents

General information:

- 1. This course essentially highlights the application of different nonlinear techniques on various nonlinear signals.
- 2. The theory and tutorials of the entire course will be conducted in online mode.
- 3. The course will have 4 contact hours per day @ 2 hours each of theory and tutorial.
- 4. Participants must have their own laptops with pre-installed suitable programming compilers/ softwares to do the computations during tutorial sessions.

Pre-requisites:

- 1. Knowledge of signals and systems, mathematics and statistics is desirable
- 2. Participants must have knowledge of coding in MATLAB, Python or C/C++/C# or any other programming language.

Course Contents:

Theory: Introduction to Wavelets; Continuous and Discrete wavelet transformation of nonlinear signals; Introduction to data-adaptive techniques; Maximum Entropy Method of data analysis; Theory of Fractals and Multifractals; Role of Fractals and multifractals in time series analysis; Different fractal and multifractal analysis techniques and determination of scaling exponents; Multifractal analysis of nonlinear signals; multifractal singularity spectrum; Wavelet-based multifractal analysis; Introduction to Hilbert-Huang transform; Empirical mode decomposition (EMD) analysis; Estimation of instantaneous amplitude, instantaneous phase and instantaneous frequency from nonlinear signals using Hilbert spectral analysis (HSA); Applications of the above techniques on a variety of naturally produced nonlinear signals.

<u>**Tutorials**</u>: Participants will be provided some test data sets and will be asked to develop their own codes to do some computations to have a hands-on experience on the analysis of nonlinear data using the above techniques.

Instructor Details			
S. No.	Name of the Instructor	Department	Email
1.	Prof. E. Chandrasekhar	Earth Sciences	esekhar@iitb.ac.in